Validation of a bayesian belief network representation for posterior probability calculations on national crime victimization survey

Artificial Intelligence and Law 16 (3):245-276 (2008)
Abstract
This paper presents an effort to induce a Bayesian belief network (BBN) from crime data, namely the national crime victimization survey (NCVS). This BBN defines a joint probability distribution over a set of variables that were employed to record a set of crime incidents, with particular focus on characteristics of the victim. The goals are to generate a BBN to capture how characteristics of crime incidents are related to one another, and to make this information available to domain specialists. The novelty associated with the study reported in this paper lies in the use of a Bayesian network to represent a complex data set to non-experts in a way that facilitates automated analysis. Validation of the BBN’s ability to approximate the joint probability distribution over the set of variables entailed in the NCVS data set is accomplished through a variety of sources including mathematical techniques and human experts for appropriate triangulation. Validation results indicate that the BBN induced from the NCVS data set is a good joint probability model for the set of attributes in the domain, and accordingly can serve as an effective query tool.
Keywords National crime victimization survey  Bayesian belief network  Machine learning  Probabilistic query  Posterior probability calculations  Joint probability distribution  Model validation
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,105
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

6 ( #204,612 of 1,101,740 )

Recent downloads (6 months)

1 ( #292,019 of 1,101,740 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.