Weak negations and neighborhood semantics

As we’ve seen in the last chapter, there is good linguistic reason to categorize negations (and negative operators in general) by which De Morgan laws they support. The weakest negative operators (merely downward monotonic) support only two De Morgan laws;1 medium-strength negative operators support a third;2 and strong negative operators support all four. As we’ve also seen, techniques familiar from modal logic are of great use in giving unifying theories of negative operators. In particular, Dunn’s (1990) distributoid theory allows us to generate relational semantics for many negations. However, the requirements of distributoid theory are a bit too strict for use in modeling the weakest negations. For a relational semantics to work, an operator must either distribute or antidistribute over either conjunction or disjunction; but the merely downward monotonic operators do not. Thus, a unifying semantics cannot be had in distributoid theory. In the (more familiar) study of positive modalities, there is a parallel result. Normal necessities distribute over conjunction, and normal possibilities over disjunction. When these distributions break down, a relational semantics is no longer appropriate. Here, there is a somewhat familiar solution: neighborhood semantics. In this chapter, I’ll adapt neighborhood semantics to the less familiar case of negative modalities, showing how it can be used to give a single semantic framework appropriate to all the pertinent sorts of negative operators.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,890
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

31 ( #101,235 of 1,725,404 )

Recent downloads (6 months)

2 ( #268,739 of 1,725,404 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.