Review of R. Tieszen, Phenomenology, logic, and the philosophy of mathematics [Book Review]

Philosophia Mathematica 16 (2):264-276 (2008)
Abstract
Richard Tieszen's new book1 is a collection of fifteen articles and reviews, spanning fifteen years, presenting the author's approach to philosophical questions about logic and mathematics from the point of view of phenomenology, as developed by Edmund Husserl in the later phase2 of his philosophical thinking known as transcendental phenomenology, starting in 1907 with the Logical Investigations and characterized by the introduction of the notions of ‘reduction’. Husserlian transcendental phenomenology as philosophy of mathematics is described as one that ‘cuts across’ different philosophical positions, such as platonism, nominalism, fictionalism, Hilbertian formalism, etc. but, at the same time, as having built in the conceptual tools which allow one not to incur the kinds of problems which are usually related to one's preferred approach. Phenomenology centers around the notion of intentionality3 or aboutness, i.e. the characteristic of acts of cognition of being about something. The ‘something’ a cognitive act is about is called its ‘intentional object’, meaning the object of an intentional act. Any kind of object can be seen as an intentional object irrespective of whether it is concrete, illusory, abstract, etc. Indeed the emphasis is on the intentional act, as it is in the intentional act that the object—which need not be claimed to exist—is present. In order to achieve knowledge of an object the phenomenologist investigates the consciousness of the knowing subject when performing the act directed to that particular object.Characterized in this way, it is not difficult to see that phenomenology has a straightforward bearing on almost everything, philosophy of mathematics included. As Tieszen puts it , ‘[…] our mathematical beliefs are always about something. They are about certain objects, such as numbers, sets, functions or groups […]’. …
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 14,242
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

8 ( #250,895 of 1,699,827 )

Recent downloads (6 months)

1 ( #362,609 of 1,699,827 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.