A sound and complete tableau calculus for reasoning about only knowing and knowing at most

Studia Logica 69 (1):171-191 (2001)
We define a tableau calculus for the logic of only knowing and knowing at most ON, which is an extension of Levesque's logic of only knowing O. The method is based on the possible-world semantics of the logic ON, and can be considered as an extension of known tableau calculi for modal logic K45. From the technical viewpoint, the main features of such an extension are the explicit representation of "unreachable" worlds in the tableau, and an additional branch closure condition implementing the property that each world must be either reachable or unreachable. The calculus allows for establishing the computational complexity of reasoning about only knowing and knowing at most. Moreover, we prove that the method matches the worst-case complexity lower bound of the satisfiability problem for both ON and O. With respect to [22], in which the tableau calculus was originally presented, in this paper we both provide a formal proof of soundness and completeness of the calculus, and prove the complexity results for the logic ON.
Keywords Philosophy   Logic   Mathematical Logic and Foundations   Computational Linguistics
Categories (categorize this paper)
DOI 10.1023/A:1013894629540
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,707
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

8 ( #276,630 of 1,726,249 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.