A sound and complete tableau calculus for reasoning about only knowing and knowing at most

Studia Logica 69 (1):171-191 (2001)
Abstract
We define a tableau calculus for the logic of only knowing and knowing at most ON, which is an extension of Levesque's logic of only knowing O. The method is based on the possible-world semantics of the logic ON, and can be considered as an extension of known tableau calculi for modal logic K45. From the technical viewpoint, the main features of such an extension are the explicit representation of "unreachable" worlds in the tableau, and an additional branch closure condition implementing the property that each world must be either reachable or unreachable. The calculus allows for establishing the computational complexity of reasoning about only knowing and knowing at most. Moreover, we prove that the method matches the worst-case complexity lower bound of the satisfiability problem for both ON and O. With respect to [22], in which the tableau calculus was originally presented, in this paper we both provide a formal proof of soundness and completeness of the calculus, and prove the complexity results for the logic ON.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    4 ( #198,532 of 1,088,600 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.