Did Malament prove the non-conventionality of simultaneity in the special theory of relativity?

Philosophy of Science 66 (2):208-220 (1999)
David Malament's (1977) well-known result, which is often taken to show the uniqueness of the Poincare-Einstein convention for defining simultaneity, involves an unwarranted physical assumption: that any simultaneity relation must remain invariant under temporal reflections. Once that assumption is removed, his other criteria for defining simultaneity are also satisfied by membership in the same backward (forward) null cone of the family of such cones with vertices on an inertial path. What is then unique about the Poincare-Einstein convention is that it is independent of the choice of inertial path in a given inertial frame, confirming a remark in Einstein 1905. Similarly, what is unique about the backward (forward) null cone definition is that it is independent of the state of motion of an observer at a point on the inertial path
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Allen I. Janis (2007). Simultaneity, Relativity and Conventionality. Studies in History and Philosophy of Science Part B 39 (1):217-224.
    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    12 ( #106,398 of 1,088,400 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,400 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.