On adaptation: A reduction of the Kauffman-Levin model to a problem in graph theory and its consequences [Book Review]

Biology and Philosophy 5 (2):127-148 (1990)
It is shown that complex adaptations are best modelled as discrete processes represented on directed weighted graphs. Such a representation captures the idea that problems of adaptation in evolutionary biology are problems in a discrete space, something that the conventional representations using continuous adaptive landscapes does not. Further, this representation allows the utilization of well-known algorithms for the computation of several biologically interesting results such as the accessibility of one allele from another by a specified number of point mutations, the accessibility of alleles at a local maximum of fitness, the accessibility of the allele with the globally maximum fitness, etc. A reduction of a model due to Kauffman and Levin to such a representation is explicitly carried out and it is shown how this reduction clarifies the biological questions that are of interest.
Keywords Adaptation  Kauffman  graph theory
Categories (categorize this paper)
DOI 10.1007/BF00127484
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,831
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

6 ( #321,878 of 1,724,889 )

Recent downloads (6 months)

3 ( #210,938 of 1,724,889 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.