Algorithmic entropy of sets

In a previous paper a theory of program size formally identical to information theory was developed. The entropy of an individual finite object was defined to be the size in bits of the smallest program for calculating it. It was shown that this is − log2 of the probability that the object is obtained by means of a program whose successive bits are chosen by flipping an unbiased coin. Here a theory of the entropy of recursively enumerable sets of objects is proposed which includes the previous theory as the special case of sets having a single element. The primary concept in the generalized theory is the probability that a computing machine enumerates a given set when its program is manufactured by coin flipping. The entropy of a set is defined to be − log2 of this probability.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

82 ( #41,037 of 1,726,249 )

Recent downloads (6 months)

64 ( #19,261 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.