A note on Monte Carlo primality tests and algorithmic information theory

clusions are only probably correct. On the other hand, algorithmic information theory provides a precise mathematical definition of the notion of random or patternless sequence. In this paper we shall describe conditions under which if the sequence of coin tosses in the Solovay– Strassen and Miller–Rabin algorithms is replaced by a sequence of heads and tails that is of maximal algorithmic information content, i.e., has maximal algorithmic randomness, then one obtains an error-free test for primality. These results are only of theoretical interest, since it is a manifestation of the G¨ odel incompleteness phenomenon that it is impossible to “certify” a sequence to be random by means of a proof, even though most sequences have this property. Thus by using certified random sequences one can in principle, but not in practice, convert probabilistic tests for primality into deterministic ones.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

70 ( #48,770 of 1,726,249 )

Recent downloads (6 months)

54 ( #21,071 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.