Existentially closed models of the theory of artinian local rings

Journal of Symbolic Logic 64 (2):825-845 (1999)
The class of all Artinian local rings of length at most l is ∀ 2 -elementary, axiomatised by a finite set of axioms Art l . We show that its existentially closed models are Gorenstein, of length exactly l and their residue fields are algebraically closed, and, conversely, every existentially closed model is of this form. The theory Got l of all Artinian local Gorenstein rings of length l with algebraically closed residue field is model complete and the theory Art l is companionable, with model-companion Got l
Keywords Model Theory   Existentially Closed Models   Artinian Local Rings   Gorenstein Rings
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    2 ( #258,148 of 1,088,623 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.