Ein rechenverfahren für die elementare logik II

Summary This study continues in calculating formulas of the first order logic. Whereas the preceding part delt with monadic predicates, the present part treats polyadic predicates. The presumptions were supplied analogously
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 13,605
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Gerhard Frey (1973). Die Relevanz der Deontischen Logik Für Die Ethik. Journal for General Philosophy of Science 4 (2):345-355.
Gerold Prauss (1993). Die innere Struktur der Zeit als ein Problem für die Formale Logik. Zeitschrift für Philosophische Forschung 47 (4):542 - 558.
Niko Strobach (1998). Logik für die Seeschlacht: Mögliche Spielzüge. Zeitschrift für Philosophische Forschung 52 (1):105 - 119.
Franz Schmidt (1966). Die symbolisierten Elemente der Leibnizischen Logik. Zeitschrift für Philosophische Forschung 20 (3/4):595 - 605.
Klaus J. Schmidt (1981). Ein Rechenverfahren Für Die Elementare Logik. Journal for General Philosophy of Science 12 (1):110-115.

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads

1 ( #514,967 of 1,692,590 )

Recent downloads (6 months)

1 ( #181,202 of 1,692,590 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.