Isomorphisms and nonisomorphisms of graph models

Journal of Symbolic Logic 56 (1):227-249 (1991)
Abstract
In this paper the existence or nonexistence of isomorphic mappings between graph models for the untyped lambda calculus is studied. It is shown that Engeler's D A is completely determined, up to isomorphism, by the cardinality of its `atom-set' A. A similar characterization is given for a collection of graph models of the Pω-type; from this some propositions regarding automorphisms are obtained. Also we give an indication of the complexity of the first-order theory of graph models by showing that the second-order theory of first-order definable elements of a graph model is first-order expressable in the model
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,074
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

7 ( #186,176 of 1,101,573 )

Recent downloads (6 months)

6 ( #44,913 of 1,101,573 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.