Meta-Induction and Social Epistemology: Computer Simulations of Prediction Games

Episteme 6 (2):200-220 (2009)
The justification of induction is of central significance for cross-cultural social epistemology. Different ‘epistemological cultures’ do not only differ in their beliefs, but also in their belief-forming methods and evaluation standards. For an objective comparison of different methods and standards, one needs (meta-)induction over past successes. A notorious obstacle to the problem of justifying induction lies in the fact that the success of object-inductive prediction methods (i.e., methods applied at the level of events) can neither be shown to be universally reliable (Hume's insight) nor to be universally optimal. My proposal towards a solution of the problem of induction is meta-induction. The meta-inductivist applies the principle of induction to all competing prediction methods that are accessible to her. By means of mathematical analysis and computer simulations of prediction games I show that there exist meta-inductive prediction strategies whose success is universally optimal among all accessible prediction strategies, modulo a small short-run loss. The proposed justification of meta-induction is mathematically analytical. It implies, however, an a posteriori justification of object-induction based on the experiences in our world. In the final section I draw conclusions about the significance of meta-induction for the social spread of knowledge and the cultural evolution of cognition, and I relate my results to other simulation results which utilize meta-inductive learning mechanisms.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.3366/E1742360009000641
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,707
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
John D. Norton (2003). A Material Theory of Induction. Philosophy of Science 70 (4):647-670.
Hans Reichenbach (1949). The Theory of Probability. Berkeley, University of California Press.

View all 10 references / Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

35 ( #93,308 of 1,726,249 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.