On the unity of modal syllogistics in Aristotle

Abstract
The goal of this paper is an interpretation of Aristotle's modal syllogistics closely oriented on the text using the resources of modern modal predicate logic. Modern predicate logic was successfully able to interpret Aristotle's assertoric syllogistics uniformly , that is, with one formula for universal premises. A corresponding uniform interpretation of modal syllogistics by means of modal predicate logic is not possible. This thesis does not imply that a uniform view is abandoned. However, it replaces the simple unity of the assertoric by the complex unity of the modal. The complexity results from the fact that though one formula for universal premises is used as the basis, it must be moderated if the text requires . Aristotle introduces his modal syllogistics by expanding his assertoric syllogistics with an axiom that links two apodictic premises to yield a single apodictic sentence . He thus defines a regular modern modal logic. By means of the regular modal logic that is thus defined, he is able to reduce the purely apodictic syllogistics to assertoric syllogistics. However, he goes beyond this simple structure when he looks at complicated inferences. In order to be able to link not only premises of the same modality, but also premises with different modalities, he introduces a second axiom, the T-axiom, which infers from necessity to reality or - equivalently - from reality to possibility. Together, the two axioms, the axiom of regularity and the T-axiom, define a regular T-logic. It plays an important role in modern logic. In order to be able to account for modal syllogistics adequately as a whole, another modern axiom is also required, the so-called B-axiom. It is very difficult to decide whether Aristotle had the B-axiom. The two last named axioms are sufficient to achieve the required contextual moderation of the basic formula for universal propositions
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,399
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-08-14

Total downloads

14 ( #116,050 of 1,102,951 )

Recent downloads (6 months)

3 ( #120,763 of 1,102,951 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.