Representing Von neumann–morgenstern games in the situation calculus

Sequential von Neumann–Morgernstern (VM) games are a very general formalism for representing multi-agent interactions and planning problems in a variety of types of environments. We show that sequential VM games with countably many actions and continuous utility functions have a sound and complete axiomatization in the situation calculus. This axiomatization allows us to represent game-theoretic reasoning and solution concepts such as Nash equilibrium. We discuss the application of various concepts from VM game theory to the theory of planning and multi-agent interactions, such as representing concurrent actions and using the Baire topology to define continuous payoff functions.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,938
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads


Recent downloads (6 months)


How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.