On the Structure of the Medvedev Lattice

Journal of Symbolic Logic 73 (2):543 - 558 (2008)
Abstract
We investigate the structure of the Medvedev lattice as a partial order. We prove that every interval in the lattice is either finite, in which case it is isomorphic to a finite Boolean algebra, or contains an antichain of size $2^{2^{\aleph }0}$ , the size of the lattice itself. We also prove that it is consistent with ZFC that the lattice has chains of size $2^{2^{\aleph }0}$ , and in fact these big chains occur in every infinite interval. We also study embeddings of lattices and algebras. We show that large Boolean algebras can be embedded into the Medvedev lattice as upper semilattices, but that a Boolean algebra can be embedded as a lattice only if it is countable. Finally we discuss which of these results hold for the closely related Muchnik lattice
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Andrea Sorbi (1991). Embedding Brouwer Algebras in the Medvedev Lattice. Notre Dame Journal of Formal Logic 32 (2):266-275.
    Paul Shafer (2010). Characterizing the Join-Irreducible Medvedev Degrees. Notre Dame Journal of Formal Logic 52 (1):21-38.
    Analytics

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index

    2010-08-24

    Total downloads

    0

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.