Independence for full conditional measures, graphoids and bayesian networks

Abstract
This paper examines definitions of independence for events and variables in the context of full conditional measures; that is, when conditional probability is a primitive notion and conditioning is allowed on null events. Several independence concepts are evaluated with respect to graphoid properties; we show that properties of weak union, contraction and intersection may fail when null events are present. We propose a concept of “full” independence, characterize the form of a full conditional measure under full independence, and suggest how to build a theory of Bayesian networks that accommodates null events.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,105
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-08-23

Total downloads

11 ( #137,206 of 1,101,768 )

Recent downloads (6 months)

1 ( #292,275 of 1,101,768 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.