On the equivalence of conglomerability and disintegrability for unbounded random variables

We extend a result of Dubins [3] from bounded to unbounded random variables. Dubins [3] showed that a finitely additive expectation over the collection of bounded random variables can be written as an integral of conditional expectations (disintegrability) if and only if the marginal expectation is always within the smallest closed interval containing the conditional expectations (conglomerability). We give a sufficient condition to extend this result to the collection Z of all random variables that have finite expected value and whose conditional expectations are finite and have finite expected value. The sufficient condition also allows the result to extend some, but not all, subcollections of Z. We give an example where the equivalence of disintegrability and conglomerability fails for a subcollection of Z that still contains all bounded random variables.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,661
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

14 ( #184,535 of 1,726,249 )

Recent downloads (6 months)

8 ( #84,767 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.