Proper scoring rules, dominated forecasts, and coherence

Abstract
De Finetti introduced the concept of coherent previsions and conditional previsions through a gambling argument and through a parallel argument based on a quadratic scoring rule. He shows that the two arguments lead to the same concept of coherence. When dealing with events only, there is a rich class of scoring rules which might be used in place of the quadratic scoring rule. We give conditions under which a general strictly proper scoring rule can replace the quadratic scoring rule while preserving the equivalence of de Finetti’s two arguments. In proving our results, we present a strengthening of the usual minimax theorem. We also present generalizations of de Finetti’s fundamental theorem of prevision to deal with conditional previsions.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,105
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

38 ( #45,221 of 1,101,740 )

Recent downloads (6 months)

7 ( #35,000 of 1,101,740 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.