Multistage Game Models and Delay Supergames

Theory and Decision 44 (1):1-36 (1998)
Abstract
The order of stages in a multistage game is often interpreted by looking at earlier stages as involving more long term decisions. For the purpose of making this interpretation precise, the notion of a delay supergame of a bounded multistage game is introduced. A multistage game is bounded if the length of play has an upper bound. A delay supergame is played over many periods. Decisions on all stages are made simultaneously, but with different delays until they become effective. The earlier the stage the longer the delay. A subgame perfect equilibrium of a bounded multistage game generates a subgame perfect equilibrium in every one of its delay supergames. This is the first main conclusion of the paper. A subgame perfect equilibrium set is a set of subgame perfect equilibria all of which yield the same payoffs, not only in the game as a whole, but also in each of its subgames. The second xmain conclusion concerns multistage games with a unique subgame perfect equilibrium set and their delay supergames which are bounded in the sense that the number of periods is finite. If a bounded multistage game has a unique subgame perfect equilibrium set, then the same is true for every one of its bounded delay supergames. Finally the descriptive relevance of multistage game models and their subgame perfect equilibria is discussed in the light of the results obtained
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,404
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Philip J. Reny (1988). Common Knowledge and Games with Perfect Information. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1988:363 - 369.
Cristina Bicchieri (1988). Backward Induction Without Common Knowledge. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1988:329 - 343.
Analytics

Monthly downloads

Added to index

2010-09-02

Total downloads

2 ( #355,341 of 1,102,993 )

Recent downloads (6 months)

1 ( #297,567 of 1,102,993 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.