Nelson algebras through Heyting ones: I

Studia Logica 49 (1):105 - 126 (1990)
Abstract
The main aim of the present paper is to explain a nature of relationships exist between Nelson and Heyting algebras. In the realization, a topological duality theory of Heyting and Nelson algebras based on the topological duality theory of Priestley ([15], [16]) for bounded distributive lattices are applied. The general method of construction of spaces dual to Nelson algebras from a given dual space to Heyting algebra is described (Thm 2.3). The algebraic counterpart of this construction being a generalization of the Fidel-Vakarelov construction ([6], [25]) is also given (Thm 3.6). These results are applied to compare the equational category N of Nelson algebras and some its subcategories (and their duals) with the equational category H of Heyting algebras (and its dual). It is proved (Thm 4.1) that the category N is topological over the category H.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    View all 6 references

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    5 ( #178,845 of 1,089,057 )

    Recent downloads (6 months)

    1 ( #69,801 of 1,089,057 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.