A new applied approach for executing computations with infinite and infinitesimal quantities

Informatica 19 (4):567-596 (2008)
Abstract
A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique framework. The new methodology has allowed us to introduce the Infinity Computer working with such numbers (its simulator has already been realized). Examples dealing with divergent series, infinite sets, and limits are given.
Keywords Infinite and infinitesimal numbers  infinite unite of measure  numeral systems  infinite sets  divergent series
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive Yaroslav D. Sergeyev, A new applied approach for executing computations with infinite and infinitesimal quantities
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-08-07

Total downloads

63 ( #26,128 of 1,101,833 )

Recent downloads (6 months)

7 ( #41,591 of 1,101,833 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.