Evaluating the exact infinitesimal values of area of Sierpinski's carpet and volume of Menger's sponge

Chaos, Solitons and Fractals 42: 3042–3046 (2009)
Very often traditional approaches studying dynamics of self-similarity processes are not able to give their quantitative characteristics at infinity and, as a consequence, use limits to overcome this difficulty. For example, it is well know that the limit area of Sierpinski’s carpet and volume of Menger’s sponge are equal to zero. It is shown in this paper that recently introduced infinite and infinitesimal numbers allow us to use exact expressions instead of limits and to calculate exact infinitesimal values of areas and volumes at various points at infinity even if the chosen moment of the observation is infinitely faraway on the time axis from the starting point. It is interesting that traditional results that can be obtained without the usage of infinite and infinitesimal numbers can be produced just as finite approximations of the new ones.
Keywords Sierpinski’s carpet
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,217
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Yaroslav Sergeyev (2010). Lagrange Lecture: Methodology of Numerical Computations with Infinities and Infinitesimals. Rendiconti Del Seminario Matematico dell'Università E Del Politecnico di Torino 68 (2):95–113.

Monthly downloads

Added to index


Total downloads

24 ( #196,700 of 1,932,453 )

Recent downloads (6 months)

5 ( #197,457 of 1,932,453 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.