From simple associations to systematic reasoning: A connectionist representation of rules, variables, and dynamic binding using temporal synchrony

Behavioral and Brain Sciences 16 (3):417-51 (1993)
Abstract
Human agents draw a variety of inferences effortlessly, spontaneously, and with remarkable efficiency – as though these inferences were a reflexive response of their cognitive apparatus. Furthermore, these inferences are drawn with reference to a large body of background knowledge. This remarkable human ability seems paradoxical given the complexity of reasoning reported by researchers in artificial intelligence. It also poses a challenge for cognitive science and computational neuroscience: How can a system of simple and slow neuronlike elements represent a large body of systemic knowledge and perform a range of inferences with such speed? We describe a computational model that takes a step toward addressing the cognitive science challenge and resolving the artificial intelligence paradox. We show how a connectionist network can encode millions of facts and rules involving n-ary predicates and variables and perform a class of inferences in a few hundred milliseconds. Efficient reasoning requires the rapid representation and propagation of dynamic bindings. Our model (which we refer to as SHRUTI) achieves this by representing (1) dynamic bindings as the synchronous firing of appropriate nodes, (2) rules as interconnection patterns that direct the propagation of rhythmic activity, and (3) long-term facts as temporal pattern-matching subnetworks. The model is consistent with recent neurophysiological evidence that synchronous activity occurs in the brain and may play a representational role in neural information processing. The model also makes specific psychologically significant predictions about the nature of reflexive reasoning. It identifies constraints on the form of rules that may participate in such reasoning and relates the capacity of the working memory underlying reflexive reasoning to biological parameters such as the lowest frequency at which nodes can sustain synchronous oscillations and the coarseness of synchronization
Keywords binding problem   connectionism   knowledge representation   long-term memory   neural oscillations   reasoning   short-term memory   systematicity   temporal synchrony   working memory
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,802
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

View all 26 citations

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

48 ( #36,419 of 1,099,746 )

Recent downloads (6 months)

22 ( #9,038 of 1,099,746 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.