Modal counterparts of Medvedev logic of finite problems are not finitely axiomatizable

Studia Logica 49 (3):365 - 385 (1990)
We consider modal logics whose intermediate fragments lie between the logic of infinite problems [20] and the Medvedev logic of finite problems [15]. There is continuum of such logics [19]. We prove that none of them is finitely axiomatizable. The proof is based on methods from [12] and makes use of some graph-theoretic constructions (operations on coverings, and colourings).
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    View all 7 references

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    3 ( #224,108 of 1,089,155 )

    Recent downloads (6 months)

    1 ( #69,735 of 1,089,155 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.