A bayesian examination of time-symmetry in the process of measurement

Erkenntnis 45 (2-3):337 - 348 (1996)
We investigate the thesis of Aharonov, Bergmann, and Lebowitz that time-symmetry holds in ensembles defined by both an initial and a final condition, called preand postselected ensembles. We distinguish two senses of time symmetry and show that the first one, concerning forward directed and time reversed measurements, holds if the measurement process is ideal, but fails if the measurement process is non-ideal, i.e., violates Lüders's rule. The second kind of time symmetry, concerning the interchange of initial and final conditions, fails even in the case of ideal measurements. Bayes's theorem is used as a primary tool for calculating the relevant probabilities. We are critical of the concept that a pair of vectors in Hilbert space, characterizing the initial and final conditions, can be considered to constitute a generalized quantum state.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/20012734
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,661
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

78 ( #43,354 of 1,726,249 )

Recent downloads (6 months)

5 ( #147,227 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.