Normal natural deduction proofs (in classical logic)

Studia Logica 60 (1):67-106 (1998)
Natural deduction (for short: nd-) calculi have not been used systematically as a basis for automated theorem proving in classical logic. To remove objective obstacles to their use we describe (1) a method that allows to give semantic proofs of normal form theorems for nd-calculi and (2) a framework that allows to search directly for normal nd-proofs. Thus, one can try to answer the question: How do we bridge the gap between claims and assumptions in heuristically motivated ways? This informal question motivates the formulation of intercalation calculi. Ic-calculi are the technical underpinnings for (1) and (2), and our paper focuses on their detailed presentation and meta-mathematical investigation in the case of classical predicate logic. As a central theme emerges the connection between restricted forms of nd-proofs and (strategies for) proof search: normal forms are not obtained by removing local "detours", but rather by constructing proofs that directly reflect proof-strategic considerations. That theme warrants further investigation.
Keywords Philosophy   Logic   Mathematical Logic and Foundations   Computational Linguistics
Categories (categorize this paper)
DOI 10.1023/A:1005091418752
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,904
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

26 ( #115,620 of 1,725,421 )

Recent downloads (6 months)

2 ( #268,739 of 1,725,421 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.