The undecidability of the DA-Unification problem

Journal of Symbolic Logic 54 (2):402 - 414 (1989)
We show that the D A -unification problem is undecidable. That is, given two binary function symbols $\bigoplus$ and $\bigotimes$ , variables and constants, it is undecidable if two terms built from these symbols can be unified provided the following D A -axioms hold: \begin{align*}(x \bigoplus y) \bigotimes z &= (x \bigotimes z) \bigoplus (y \bigotimes z),\\x \bigotimes (y \bigoplus z) &= (x \bigotimes y) \bigoplus (x \bigotimes z),\\x \bigoplus (y \bigoplus z) &= (x \bigoplus y) \bigoplus z.\end{align*} Two terms are D A -unifiable (i.e. an equation is solvable in D A ) if there exist terms to be substituted for their variables such that the resulting terms are equal in the equational theory D A . This is the smallest currently known axiomatic subset of Hilbert's tenth problem for which an undecidability result has been obtained
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    3 ( #224,136 of 1,089,053 )

    Recent downloads (6 months)

    1 ( #69,801 of 1,089,053 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.