Husserl's Two Notions of Completeness: Husserl and Hilbert on Completeness and Imaginary Elements in Mathematics

Synthese 125 (3):417 - 438 (2000)
In this paper I discuss Husserl's solution of the problem of imaginary elements in mathematics as presented in the drafts for two lectures he gave in Göttingen in 1901 and other related texts of the same period, a problem that had occupied Husserl since the beginning of 1890, when he was planning a never published sequel to "Philosophie der Arithmetik" (1891). In order to solve the problem of imaginary entities Husserl introduced, independently of Hilbert, two notions of completeness (definiteness in Husserl's terminology) for a formal axiomatic system. I present and discuss these notions here, establishing also parallels between Husserl's and Hilbert's notions of completeness.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/20117093
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Roberto Poli (1993). Husserl's Conception of Formal Ontology. History and Philosophy of Logic 14 (1):1-14.

Monthly downloads

Added to index


Total downloads

20 ( #142,353 of 1,726,249 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.