Network formation by reinforcement learning: The long and medium run

We investigate a simple stochastic model of social network formation by the process of reinforcement learning with discounting of the past. In the limit, for any value of the discounting parameter, small, stable cliques are formed. However, the time it takes to reach the limiting state in which cliques have formed is very sensitive to the discounting parameter. Depending on this value, the limiting result may or may not be a good predictor for realistic observation times.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    3 ( #224,045 of 1,088,810 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.