Network formation by reinforcement learning: The long and medium run

Abstract
We investigate a simple stochastic model of social network formation by the process of reinforcement learning with discounting of the past. In the limit, for any value of the discounting parameter, small, stable cliques are formed. However, the time it takes to reach the limiting state in which cliques have formed is very sensitive to the discounting parameter. Depending on this value, the limiting result may or may not be a good predictor for realistic observation times.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-12-05

Total downloads

5 ( #223,146 of 1,098,129 )

Recent downloads (6 months)

2 ( #172,576 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.