Expressing and capturing the primitive recursive functions

Abstract
The last Episode wasn’t about logic or formal theories at all: it was about common-or-garden arithmetic and the informal notion of computability. We noted that addition can be defined in terms of repeated applications of the successor function. Multiplication can be defined in terms of repeated applications of addition. The exponential and factorial functions can be defined, in different ways, in terms of repeated applications of multiplication. There’s already a pattern emerging here! The main task in the last Episode was to get clear about this pattern. So first we said more about the idea of defining one function in terms of repeated applications of another function. Tidied up, that becomes the idea of defining a function by primitive recursion (Defn. 27).
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,322
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-11-28

Total downloads

5 ( #212,796 of 1,096,498 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.