Incompleteness and undecidability

In Episode 1, we introduced the very idea of a negation-incomplete formalized theory T . We noted that if we aim to construct a theory of basic arithmetic, we’ll ideally like the theory to be able to prove all the truths expressible in the language of basic arithmetic, and hence to be negation complete. But Gödel’s First Incompleteness Theorem says, very roughly, that a nice theory T containing enough arithmetic will always be negation incomplete. Now, the Theorem comes in two flavours, depending on whether we cash out the idea of being ‘nice enough’ in terms of (i) the semantic idea of T ’s being a sound theory, or (ii) the idea of odel’s own T ’s being a consistent theory which proves enough arithmetic. And we noted that G¨.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

20 ( #142,347 of 1,726,564 )

Recent downloads (6 months)

1 ( #369,858 of 1,726,564 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.