Many-valued logics

Abstract
A many-valued (aka multiple- or multi-valued) semantics, in the strict sense, is one which employs more than two truth values; in the loose sense it is one which countenances more than two truth statuses. So if, for example, we say that there are only two truth values—True and False—but allow that as well as possessing the value True and possessing the value False, propositions may also have a third truth status—possessing neither truth value—then we have a many-valued semantics in the loose but not the strict sense. A many-valued logic is one which arises from a many-valued semantics and does not also arise from any two-valued semantics [Malinowski, 1993, 30]. By a ‘logic’ here we mean either a set of tautologies, or a consequence relation. We can best explain these ideas by considering the case of classical propositional logic. The language contains the usual basic symbols (propositional constants p, q, r, . . .; connectives ¬, ∧, ∨, →, ↔; and parentheses) and well-formed formulas are defined in the standard way. With the language thus specified—as a set of well-formed formulas—its semantics is then given in three parts. (i) A model of a logical language consists in a free assignment of semantic values to basic items of the non-logical vocabulary. Here the basic items of the non-logical vocabulary are the propositional constants. The appropriate kind of semantic value for a proposition is a truth value, and so a model of the language consists in a free assignment of truth values to basic propositions. Two truth values are countenanced: 1 (representing truth) and 0 (representing falsity). (ii) Rules are presented which determine a truth value for every proposition of the language, given a model. The most common way of presenting these rules is via truth tables (Figure 1). Another way of stating such rules—which will be useful below—is first to introduce functions on the truth values themselves: a unary function ¬ and four binary functions ∧, ∨, → and ↔ (Figure 2)..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2010-02-18

    Total downloads

    41 ( #34,844 of 1,088,372 )

    Recent downloads (6 months)

    1 ( #69,449 of 1,088,372 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.