Nonstandard characterizations of recursive saturation and resplendency

Journal of Symbolic Logic 52 (3):842-863 (1987)
Abstract
We prove results about nonstandard formulas in models of Peano arithmetic which complement those of Kotlarski, Krajewski, and Lachlan in [KKL] and [L]. This enables us to characterize both recursive saturation and resplendency in terms of statements about nonstandard sentences. Specifically, a model M of PA is recursively saturated iff M is nonstandard and M-logic is consistent.M is resplendent iff M is nonstandard, M-logic is consistent, and every sentence φ which is consistent in M-logic is contained in a full satisfaction class for M. Thus, for models of PA, recursive saturation can be expressed by a (standard) Σ 1 1 -sentence and resplendency by a ▵ 1 2 -sentence
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,392
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

10 ( #148,525 of 1,102,917 )

Recent downloads (6 months)

7 ( #36,679 of 1,102,917 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.