Actions of non-compact and non-locally compact polish groups

Journal of Symbolic Logic 65 (4):1881-1894 (2000)
Abstract
We show that each non-compact Polish group admits a continuous action on a Polish space with non-smooth orbit equivalence relation. We actually construct a free such action. Thus for a Polish group compactness is equivalent to all continuous free actions of this group being smooth. This answers a question of Kechris. We also establish results relating local compactness of the group with its inability to induce orbit equivalence relations not reducible to countable Borel equivalence relations. Generalizing a result of Hjorth, we prove that each non-locally compact, that is, infinite dimensional, separable Banach space has a continuous action on a Polish space with non-Borel orbit equivalence relation, thus showing that this property characterizes non-local compactness among Banach spaces
Keywords Polish Group   Continuous Action   Orbit Equivalence Relation
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,449
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

7 ( #189,127 of 1,103,221 )

Recent downloads (6 months)

7 ( #36,861 of 1,103,221 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.