Automated Search for Causal Relations - Theory and Practice

Abstract
nature of modern data collection and storage techniques, and the increases in the speed and storage capacities of computers. Statistics books from 30 years ago often presented examples with fewer than 10 variables, in domains where some background knowledge was plausible. In contrast, in new domains, such as climate research where satellite data now provide daily quantities of data unthinkable a few decades ago, fMRI brain imaging, and microarray measurements of gene expression, the number of variables can range into the tens of thousands, and there is often limited background knowledge to reduce the space of alternative causal hypotheses. In such domains, non-automated causal discovery techniques appear to be hopeless, while the availability of faster computers with larger memories and disc space allow for the practical implementation of computationally intensive automated search algorithms over large search spaces. Contemporary science is not your grandfather’s science, or Karl Popper’s. Causal inference without experimental controls has long seemed as if it must somehow be capable of being cast as a kind of statistical inference involving estimators with some kind of convergence and accuracy properties under some kind of assumptions. Until recently, the statistical literature said not. While parameter estimation and experimental design for the effective use of data developed throughout the 20th century, as recently as 20 years ago the methodology of causal inference without experimental controls remained relatively primitive. Besides a cessation of hostilities from the majority of the statistical and philosophical communities (which has still only partially happened), several things were needed for theories of causal estimation to appear and to flower: well defined mathematical objects to represent causal relations; well defined connections between aspects of these objects and sample data; and a way to compute those connections. A sequence of studies beginning with Dempster’s work on the factorization of probability distributions [Dempster 1972] and culminating with Kiiveri and Speed’s [Kiiveri & Speed 1982] study of linear structural equation models, provided the first, in the form of directed acyclic graphs, and the second, in the form of the “local” Markov condition..
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,731
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-08-11

Total downloads

11 ( #135,134 of 1,098,650 )

Recent downloads (6 months)

1 ( #285,836 of 1,098,650 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.