Heuristic greedy search algorithms for latent variable models

A Bayesian network consists of two distinct parts: a directed acyclic graph (DAG or belief-network structure) and a set of parameters for the DAG. The DAG in a Bayesian network can be used to represent both causal hypotheses and sets of probability distributions. Under the causal interpretation, a DAG represents the causal relations in a given population with a set of vertices V when there is an edge from A to B if and only if A is a direct cause of B relative to V. (We adopt the convention that sets of variables are capitalized and boldfaced, and individual variables are capitalized and italicized.) Under the statistical interpretation a DAG G can be taken to represent a set of all distributions all of which share a set of conditional independence relations that are entailed by satisfying a local directed Markov property (defined below).
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

9 ( #257,483 of 1,727,286 )

Recent downloads (6 months)

1 ( #354,177 of 1,727,286 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.