How are Mathematical Objects Constituted? A Structuralist Answer

Abstract
The paper proposes to amend structuralism in mathematics by saying what places in a structure and thus mathematical objects are. They are the objects of the canonical system realizing a categorical structure, where that canonical system is a minimal system in a specific essentialistic sense. It would thus be a basic ontological axiom that such a canonical system always exists. This way of conceiving mathematical objects is underscored by a defense of an essentialistic version of Leibniz’ principle according to which each object is uniquely characterized by its proper and possibly relational essence (where “proper” means “not referring to identity").
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,768
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-07-24

Total downloads

22 ( #76,845 of 1,098,974 )

Recent downloads (6 months)

1 ( #287,052 of 1,098,974 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.