Quantum superposition justified in a new non-aristotelian finitary logic

A new non-Aristotelian finitary logic (NAFL) is proposed in which it is postulated that the truth or falseness of an undecidable proposition in a theory T is meaningful only when asserted axiomatically; there is no truth other than axiomatic truth. It is shown that under this hypothesis, the law of the excluded middle and the law of non-contradiction for such undecidable propositions must fail to be theorems of T. The phenomenon of quantum superposition is thus explained in NAFL. It is also shown that infinite sets cannot exist in any consistent theory of NAFL, which makes it a very restrictive logic. Implications for some modern mathematical and physical theories are analyzed from the point of view of NAFL.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 19,940
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads

2 ( #677,009 of 1,792,063 )

Recent downloads (6 months)

2 ( #344,915 of 1,792,063 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.