Mind changes and testability: How formal and statistical learning theory converge in the new Riddle of induction

Abstract
This essay demonstrates a previously unnoticed connection between formal and statistical learning theory with regard to Nelson Goodman’s new riddle of induction. Discussions of Goodman’s riddle in formal learning theory explain how conjecturing “all green” before “all grue” can enhance efficient convergence to the truth, where efficiency is understood in terms of minimizing the maximum number of retractions or “mind changes.” Vapnik-Chervonenkis (VC) dimension is a central concept in statistical learning theory and is similar to Popper’s notion of degrees of testability. I show that for a class inductive problems of which Goodman’s riddle is one example, a reliable inductive method minimizes the maximum number of mind changes exactly if it always conjectures the hypothesis from the set with lowest VC dimension consistent with the data. I also discuss the relevance of these results to language invariance and curve fitting.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,101
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

23 ( #79,994 of 1,102,136 )

Recent downloads (6 months)

1 ( #306,622 of 1,102,136 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.