Model theory and validity

Synthese 123 (2):165-193 (2000)
Abstract
Take a formula of first-order logic which is a logical consequence of some other formulae according to model theory, and in all those formulae replace schematic letters with English expressions. Is the argument resulting from the replacement valid in the sense that the premisses could not have been true without the conclusion also being true? Can we reason from the model-theoretic concept of logical consequence to the modal concept of validity? Yes, if the model theory is the standard one for sentential logic; no, if it is the standard one for the predicate calculus; and yes, if it is a certain model theory for free logic. These conclusions rely inter alia on some assumptions about possible worlds, which are mapped into the models of model theory. Plural quantification is used in the last section, while part of the reasoning is relegated to an appendix that includes a proof of completeness for a version of free logic.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,361
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

26 ( #68,022 of 1,102,718 )

Recent downloads (6 months)

5 ( #61,837 of 1,102,718 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.