The role of constrained self-organization in genome structural evolution

Acta Biotheoretica 44 (2) (1996)
A hypothesis of genome structural evolution is explored. Rapid and cohesive alterations in genome organization are viewed as resulting from the dynamic and constrained interactions of chromosomal subsystem components. A combination of macromolecular boundary conditions and DNA element involvement in far-from-equilibrium reactions is proposed to increase the complexity of genomic subsystems via the channelling of genome turnover; interactions between subsystems create higher-order subsystems expanding the phase space for further genetic evolution. The operation of generic constraints on structuration in genome evolution is suggested by i) universal, homoplasic features of chromosome organization and ii) the metastable nature of genome structures where lower-level flux is constrained by higher-order structures. Phenomena such as genomic shock, bursts of transposable element activity, concerted evolution, etc., are hypothesized to result from constrained systemic responses to endogenous/exogenous, micro/macro perturbations. The constraints operating on genome turnover are expected to increase with chromosomal structural complexity, the number of interacting subsystems, and the degree to which interactions between genomic components are tightly ordered.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,865
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

12 ( #200,376 of 1,725,153 )

Recent downloads (6 months)

6 ( #110,393 of 1,725,153 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.