Partial order reasoning for a nonmonotonic theory of action

Abstract
This paper gives a new, proof-theoretic explanation of partial-order reasoning about time in a nonmonotonic theory of action. The explanation relies on the technique of lifting ground proof systems to compute results using variables and unification. The ground theory uses argumentation in modal logic for sound and complete reasoning about specifications whose semantics follows Gelfond and Lifschitz’s language . The proof theory of modal logic A represents inertia by rules that can be instantiated by sequences of time steps or events. Lifting such rules introduces string variables and associates each proof with a set of string equations; these equations are equivalent to a set of partial-order tree-constraints that can be solved efficiently. The defeasible occlusion of inertia likewise imposes partial-order constraints in the lifted system. By deriving an auxiliary partial order representation of action from the underlying logic, not the input formulas or proofs found, this paper strengthens the connection between practical planners and formal theories of action. Moreover, the general correctness of the theory of action justifies partial-order representations not only for forward reasoning from a completely specified start state, but also for explanatory reasoning and for reasoning by cases.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,369
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

10 ( #120,551 of 1,089,249 )

Recent downloads (6 months)

1 ( #70,127 of 1,089,249 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.