32 Peter M. Sullivan

Define ‘het’ as a predicate that truly applies to itself if and only if it does not truly apply to itself and which also truly applies to any predicate that does not truly apply to its own name. We know that the attempted definition of ‘hes’ is a failure, and so a fortiori is that of ‘het’. Similarly, there is no Qussell class which contains itself as a member if and only if it does not contain itself as a member, so a fortiori there is no Russell Class which contains itself as a member if and only if it does not contain itself as a member and which also contains all and only non-self-membered classes (such as the class of dogs). The second conjunct in both the definition of ‘het’ and of the Russell class cannot revive a definition doomed to failure. Likewise, the ‘definition’ of n as ‘n > 1 iff n < 1’ fails, and the attempted definition of m as ‘m > 1 iff m < 1 and m is prime’ is hopeless too; its final clause buys it no respectability.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    4 ( #198,532 of 1,088,424 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.