Bottom-up skill learning in reactive sequential decision tasks

This paper introduces a hybrid model that unifies connectionist, symbolic, and reinforcement learning into an integrated architecture for bottom-up skill learning in reactive sequential decision tasks. The model is designed for an agent to learn continuously from on-going experience in the world, without the use of preconceived concepts and knowledge. Both procedural skills and high-level knowledge are acquired through an agent’s experience interacting with the world. Computational experiments with the model in two domains are reported.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

8 ( #276,630 of 1,726,249 )

Recent downloads (6 months)

1 ( #369,877 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.