Beyond simple rule extraction: The extraction of planning knowledge from reinforcement learners

Abstract
Abstra,ct— This paper will discuss learning in hybrid models that goes beyond simple rule extraction from backpropagation networks. Although simple rule extraction has received a lot of research attention, to further develop hybrid learning models that include both symbolic and subsymbolic knowledge and that learn autonomously, it is necessary to study autonomous learning of both subsymbolic and symbolic knowledge in integrated architectures. This paper will describe knowledge extraction from neural reinforcement learning. It includes two approaches towards extracting plan knowledge: the extraction of explicit, symbolic rules from neural reinforcement learning, and the extraction of complete plans. This work points to the creation of a general framework for achieving the subsymbolic to symbolic transition in an integrated autonomous learning framework.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,361
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-06-13

Total downloads

5 ( #229,521 of 1,102,699 )

Recent downloads (6 months)

1 ( #296,833 of 1,102,699 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.