Extracting plans from reinforcement learners

Abstract
forcement learning algorithms that generate only reactive policies and existing probabilistic planning algorithms that requires a substantial amount of a priori knowledge in order to plan we devise a two stage bottom up learning to plan process in which rst reinforcement learn ing dynamic programming is applied without the use of a priori domain speci c knowledge to acquire a reactive policy and then explicit plans are extracted from the learned reactive policy Plan extraction is based on a beam search algorithm that performs temporal projection in a restricted fashion guided by the value functions resulting from reinforcement learn ing dynamic programming..
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,068
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-06-13

Total downloads

3 ( #307,790 of 1,101,815 )

Recent downloads (6 months)

1 ( #306,516 of 1,101,815 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.