Multi-Agent Reinforcement Learning: Weighting and Partitioning

This paper addresses weighting and partitioning in complex reinforcement learning tasks, with the aim of facilitating learning. The paper presents some ideas regarding weighting of multiple agents and extends them into partitioning an input/state space into multiple regions with di erential weighting in these regions, to exploit di erential characteristics of regions and di erential characteristics of agents to reduce the learning complexity of agents (and their function approximators) and thus to facilitate the learning overall. It analyzes, in reinforcement learning tasks, di erent ways of partitioning a task and using agents selectively based on partitioning. Based on the analysis, some heuristic methods are described and experimentally tested. We nd that some o -line heuristic methods performed the best, signi cantly better than single-agent models
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,879
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

12 ( #200,376 of 1,725,161 )

Recent downloads (6 months)

7 ( #93,209 of 1,725,161 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.