Transitive indistinguishability and approximate measurement with standard finite ratio-scale representations

Ordinary measurement using a standard scale, such as a ruler or a standard set of weights, has two fundamental properties. First, the results are approximate, for example, within 0.1 g. Second, the resulting indistinguishability is transitive, rather than nontransitive, as in the standard psychological comparative judgments without a scale. Qualitative axioms are given for structures having the two properties mentioned. A representation theorem is then proved in terms of upper and lower measures.
Keywords Measurement Theory  Approximation  Transitivity
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Hans Colonius (1978). On Weak Extensive Measurement. Philosophy of Science 45 (2):303-308.

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads


    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.