Quantum selections, propensities and the problem of measurement

This paper expands on, and provides a qualified defence of, Arthur Fine's selective interactions solution to the measurement problem. Fine's approach must be understood against the background of the insolubility proof of the quantum measurement. I first defend the proof as an appropriate formal representation of the quantum measurement problem. The nature of selective interactions, and more generally selections, is then clarified, and three arguments in their favour are offered. First, selections provide the only known solution to the measurement problem that does not relinquish any of the explicit premises of the insolubility proofs. Second, unlike some no-collapse interpretations of quantum mechanics, selections suffer no difficulties with non-ideal measurements. Third, unlike most collapse interpretations, selections can be independently motivated by an appeal to quantum propensities. Introduction The problem of quantum measurement 2.1 The ignorance interpretation of mixtures 2.2 The eigenstate–eigenvalue link 2.3 The quantum theory of measurement The insolubility proof of the quantum measurement 3.1 Some notation 3.2 The transfer of probability condition (TPC) 3.3 The occurrence of outcomes condition (OOC) A defence of the insolubility proof 4.1 Stein's critique 4.2 Ignorance is not required 4.3 The problem of quantum measurement is an idealisation Selections 5.1 Representing dispositional properties 5.2 Selections solve the measurement problem 5.3 Selections and ignorance Non-ideal selections 6.1 No-collapse interpretations and non-ideal measurements 6.2 Exact and approximate measurements 6.3 Selections for non-ideal interactions 6.4 Approximate selections 6.5 Implications for ignorance Selective interactions test quantum propensities 7.1 Equivalence classes as physical ‘aspects’: a critique 7.2 Quantum dispositions 7.3 Selections as a propensity modal interpretation 7.4 A comparison with Popper's propensity interpretation.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    18 ( #78,321 of 1,089,155 )

    Recent downloads (6 months)

    2 ( #42,781 of 1,089,155 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.