Algebraic Kripke sheaf semantics for non-classical predicate logics

Studia Logica 63 (3):387-416 (1999)
Abstract
In so-called Kripke-type models, each sentence is assigned either to true or to false at each possible world. In this setting, every possible world has the two-valued Boolean algebra as the set of truth values. Instead, we take a collection of algebras each of which is attached to a world as the set of truth values at the world, and obtain an extended semantics based on the traditional Kripke-type semantics, which we call here the algebraic Kripke semantics. We introduce algebraic Kripke sheaf semantics for super-intuitionistic and modal predicate logics, and discuss some basic properties. We can state the Gödel-McKinsey-Tarski translation theorem within this semantics. Further, we show new results on super-intuitionistic predicate logics. We prove that there exists a continuum of super-intuitionistic predicate logics each of which has both of the disjunction and existence properties and moreover the same propositional fragment as the intuitionistic logic.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Melvin Fitting (2004). First-Order Intensional Logic. Annals of Pure and Applied Logic 127 (1-3):171-193.
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    9 ( #128,851 of 1,088,883 )

    Recent downloads (6 months)

    1 ( #69,661 of 1,088,883 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.